Unit 3 - Moles \& Stoichiometry

At the end of this unit, you'll know...

\checkmark A compound is a substance composed of two or more different elements that are chemically combined in a fixed proportion. A chemical compound can only be broken down by chemical means.
\checkmark Chemical compounds can be represented by a specific formula and assigned a name based on the IUPAC system.
\checkmark Types of chemical formulas include empirical, molecular, and structural.
\checkmark Empirical formulas show elements in their simplest whole number ratios. This may or may not be the same as the molecular formula.
\checkmark Molecular formulas show the actual number of atoms per element in a single molecule.
\checkmark Structural formulas show the number of each type of atom as well as their physical arrangement.
\checkmark All chemical reactions show a conservation of mass, energy and charge.
\checkmark A balanced chemical equation represents conservation of atoms.
\checkmark The coefficients in a balanced chemical equation can be used to determine mole ratios in the reaction.
\checkmark The formula mass of a substance is the sum of the atomic masses of its atoms. The molar mass (gram formula mass) equals the mass of one mole of that substance.
\checkmark The percent composition by mass of each element in a compound can be calculated mathematically.
\checkmark Types of chemical reactions include synthesis, decomposition single replacement, and double replacement.

Term	Definition
Balanced equation	a chemical equation in which the number of moles of each element on the reactants side is equal to the number of moles of each element on the products side
Coefficient	the integer that appears in front of an element, molecule, or compound indicating the number of moles present
Decomposition reaction	a chemical reaction in which a compound is broken down into simpler substance Ex: AB à A + B
Double-replacement reaction	a chemical reaction in which a metal replaces a metal AND a nonmetal replaces a nonmetal within two compounds; two compounds "trade" elements Ex: AB + XY à AY + XB
Empirical formula	formula for a compound which provides the simplest ratio of the elements present Ex: The empirical formula for the molecule C6H12O6 is CH2O
Formula mass (FM)	the sum of the atomic masses of a substance in a.m.u.
Gram formula mass GFM)	the sum of the atomic masses of a substance in grams
Law of conservation of	
energy	in any chemical reaction, energy can neither be created nor destroyed; the energy of the reactants must be equal to the energy of the products
in any chemical reaction, mass can neither be created nor	
Law of conservation of	
destroyed; the mass of the reactants must be equal to the mass of	
the products	

\qquad

Elements and Compounds

1) Which of the following CAN be decomposed by chemical change?
a) SO_{2}
b) N_{2}
c) Ne
d) Al

\qquad
 2) Which of the following fictitious element symbols are legitimate?

a) Cn
b) HB
c) zL
d) r
3) Which of the following substances can not be decomposed by chemical change?
a) Na
b) HNO_{3}
c) ZnCl_{2}
d) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
4) You have discovered a new element and name it. Which one of the following symbols may be used for your new element?
a) U
b) $D G$
c) nD
d) Sd
5) Which of the following substances can be decomposed by chemical change?
a) Na
b) Cl
c) NaCl
d) K
6) Which of the following represents a homogeneous mixture?
a) NaCl (s)
b) $\mathrm{NaCl}(\mathrm{I})$
c) $\mathrm{NaCl}(\mathrm{aq})$
d) $\mathrm{NaCl}(\mathrm{g})$
\qquad 7) Which of the following represents a heterogeneous mixture?
a) air
b) soil
c) salt water
d) sugar
8) Draw a particle diagram of a compound of CaCl_{2}, using black solid circles to represent the Ca and empty circles to represent the Cl . Draw at least five molecules of CaCl_{2} in the box below:

Period \qquad

Elements and Compounds

9 Which substance can be decomposed by 11 Bronze contains 90 to 95 percent copper and 5 to chemical means?
(1) ammonia
(3) phosphorus
(2) oxygen
(4) silicon 10 percent tin. Because these percentages can vary, bronze is classified as
(1) a compound
(3) a mixture
(2) an element
(4) a substance

10 Which substance can be decomposed by chemical means?
(1) tungsten
(3) krypton
(2) antimony
(4) methane

Label each of the following as Element, Compound, Mixture of elements, mixture of compounds, or mixture of both (elements and compounds.).

15

16

17

\qquad
Period \qquad
Naming Compounds

M-NM

1. NaBr \qquad
2. CaO \qquad
3. $\mathrm{Li}_{2} \mathrm{~S}$ \qquad
4. MgBr_{2} \qquad
5. $\mathrm{Be}(\mathrm{OH})_{2}$ \qquad
6. $\mathrm{NH}_{4} \mathrm{Cl}$ \qquad
7. $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$ \qquad
8. TiBr_{3} \qquad
NM-NM
9. SO_{3} \qquad
10. $\mathrm{N}_{2} \mathrm{~S}$ \qquad
11. PH_{3} \qquad
12. BF_{3} \qquad
13. $\mathrm{P}_{2} \mathrm{Br}_{4}$ \qquad

Mixed

26. $\mathrm{Fe}(\mathrm{CN})_{3}$ \qquad
27. $\mathrm{Mg}_{3} \mathrm{~N}_{2}$ \qquad
28. $\mathrm{N}_{2} \mathrm{O}$ \qquad
29. $\mathrm{H}_{2} \mathrm{O}$ \qquad
30. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ \qquad
31. $\mathrm{P}_{2} \mathrm{O}_{5}$ \qquad
32. NH_{3} \qquad
33. FeSO_{4} \qquad
34. SiO_{2} \qquad
35. GaCl_{3} \qquad
36. CoBr_{2} \qquad
37. $\mathrm{B}_{2} \mathrm{H}_{4}$ \qquad
\qquad
Period \qquad
Molecular Formula from Name
38. magnesium acetate \qquad
39. boron carbide \qquad
40. calcium carbonate \qquad
41. aluminum carbonate \qquad
42. aluminum chloride \qquad
43. calcium chloride \qquad
44. ammonium chloride \qquad
45. sodium cyanide \qquad
46. sulfur dibromide \qquad
47. oxygen difluoride \qquad
48. carbon disulfide \qquad
49. magnesium hydroxide \qquad
50. potassium iodide \qquad
51. nitrogen monoxide \qquad
52. sodium nitrate \qquad
53. magnesium oxide \qquad
54. aluminum oxide \qquad
55. phosphorus pentafluoride \qquad
56. sodium phosphate \qquad
57. beryllium phosphide \qquad
58. lithium sulfate \qquad
59. diboron tetrahydride \qquad
60. nitrogen trichloride \qquad
61. dinitrogen trioxide \qquad
\qquad
Period \qquad
62. iron (III) sulfite \qquad
63. chromium (III) sulfide \qquad
64. calcium carbonate \qquad
65. sodium acetate \qquad
66. cobalt (II) fluoride \qquad
67. sodium phosphide \qquad
68. tin (IV) oxide \qquad
69. gold (III) bromide \qquad
70. copper (II) iodide \qquad
71. strontium chloride \qquad
72. lithium acetate \qquad
73. magnesium hydroxide \qquad
74. nickel (II) nitrate \qquad
75. chromium (III) sulfite \qquad
76. copper (II) sulfide \qquad
77. iron (III) bromide \qquad
78. aluminum nitride \qquad
79. calcium sulfate \qquad
80. sodium phosphate \qquad
81. iron (III) nitrate \qquad
82. ammonium carbonate \qquad
83. sulfur tetrafluoride \qquad
84. xenon tetrafluoride \qquad
85. dihydrogen monoxide \qquad
\qquad

Writing Ionic Formulas

Use the crisscross method to predict the simplest possible formula

	Cl^{-}	OH^{-}	$\mathrm{CO}_{3}{ }^{2-}$	$\mathrm{SO}_{4}{ }^{2-}$	$\mathrm{PO}_{4}{ }^{3-}$
Na^{+}					
$\mathrm{NH}_{4}{ }^{+}$					
K^{+}					
Ca^{2+}					
Mg^{2+}					
Fe^{3+}					
Al^{3+}					
Ce^{3+}					
H^{+}					

Name \qquad
\qquad
Period \qquad

Formulas

1. Explain the difference between a molecular formula and an empirical formula. \qquad
2. Write the empirical formula for each of the following:
a. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ \qquad
b. $\mathrm{O}_{2} \mathrm{~F}_{2}$ \qquad
c. $\mathrm{P}_{4} \mathrm{O}_{6}$ \qquad
d. $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}$ \qquad
e. $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$ \qquad
f. $\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{COOH}$ \qquad

3. Write the molecular formula for butane. \qquad
4. Write the molecular formula for methylpropane. \qquad
5. Compound X has been found to contain twice as many hydrogen atoms as carbon atoms and no other elements.
a. Write the empirical formula for compound X . \qquad
b. Of the molecular formulas in the box below, which ones could possibly represent compound X ?
6. Compound Y has been found to contain elements in the following ratio: 3 carbon atoms : 6 hydrogen atoms : 1 oxygen atoms.
a. Write the empirical formula for compound Y.
b. Of the molecular formulas in the box below, which ones could possibly represent compound Y?

\qquad
\qquad
Period \qquad

Identifying Reaction Types

Determine if the following are synthesis (S), decomposition (D), single replacement (SR), or double replacement (DR) reactions.
\qquad 1. $2 \mathrm{NaClO}_{3} \rightarrow 2 \mathrm{NaCl}+3 \mathrm{O}_{2}$
\qquad 2. $2 \mathrm{AgNO}_{3}+\mathrm{Ni} \rightarrow \mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{Ag}$
\qquad 3. $\mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
\qquad 4. $\mathrm{BaCO}_{3} \rightarrow \mathrm{BaO}+\mathrm{CO}_{2}$
\qquad 5. $4 \mathrm{Cr}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Cr}_{2} \mathrm{O}_{3}$
\qquad 6. $\mathrm{Ca}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2}$
\qquad 7. $\mathrm{Ca}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CaCO}_{3}+2 \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
\qquad 8. $\mathrm{Cu}(\mathrm{OH})_{2}+2 \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightarrow \mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}$
\qquad 9. $8 \mathrm{Cu}+\mathrm{S}_{8} \rightarrow 8 \mathrm{CuS}$
\qquad 10. $\mathrm{P}_{4}+5 \mathrm{O}_{2} \rightarrow 2 \mathrm{P}_{2} \mathrm{O}_{5}$
\qquad 11. $2 \mathrm{~K}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{KOH}+\mathrm{H}_{2}$
\qquad 12. $3 \mathrm{AgNO}_{3}+\mathrm{K}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Ag}_{3} \mathrm{PO}_{4}+3 \mathrm{KNO}_{3}$
\qquad 13. $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}$
\qquad 14. $\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
\qquad 15. $\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{FeO}+\mathrm{OH}$
\qquad 16. $2 \mathrm{NH}_{3} \rightarrow \mathrm{~N}_{2}+3 \mathrm{H}_{2}$
\qquad 17. $\mathrm{Mg}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{MgSO}_{4}+\mathrm{H}_{2}$
\qquad 18. $\mathrm{F}_{2}+2 \mathrm{HBr} \rightarrow \mathrm{Br}_{2}+2 \mathrm{HF}$
\qquad 19. $\mathrm{Zn}\left(\mathrm{NO}_{3}\right) 2+\mathrm{CaCO}_{3} \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{ZnCO}_{3}$
20. $4 \mathrm{Al}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}$
\qquad
\qquad
Period \qquad
21. $\mathrm{CuSO}_{4} \bullet 5 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CuO}+\mathrm{H}_{2} \mathrm{SO}_{4}+4 \mathrm{H}_{2} \mathrm{O}$
$\xrightarrow{\text { 22. } \mathrm{SiF}_{6}+6 \mathrm{Xe} \rightarrow \mathrm{SiXe}_{6}+3 \mathrm{~F}_{2}, ~}$
$\xrightarrow{23 .} \mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}$
24. $\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
25. $2 \mathrm{NH}_{3} \rightarrow \mathrm{~N}_{2}+3 \mathrm{H}_{2}$
\qquad 26. $\mathrm{Mg}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{MgSO}_{4}+\mathrm{H}_{2}$
\qquad 27. $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{CaCO}_{3} \quad \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{ZnCO}_{3}$
28. $4 \mathrm{Al}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}$
$\xrightarrow{\text { 29. } \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CuO}+\mathrm{H}_{2} \mathrm{SO}_{4}+4 \mathrm{H}_{2} \mathrm{O}}$
\qquad 30. $\mathrm{SiF}_{6}+6 \mathrm{Xe} \rightarrow \mathrm{SiXe}_{6}+3 \mathrm{~F}_{2}$
\qquad 31. $2 \mathrm{NaClO}_{3} \rightarrow 2 \mathrm{NaCl}+3 \mathrm{O}_{2}$
\qquad 32. $2 \mathrm{AgNO}_{3}+\mathrm{Ni} \rightarrow \mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{Ag}$
\qquad 33. $\mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
\qquad 34. $\mathrm{BaCO}_{3} \rightarrow \mathrm{BaO}+\mathrm{CO}_{2}$
\qquad 35. $4 \mathrm{Cr}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Cr}_{2} \mathrm{O}_{3}$
\qquad 36. $\mathrm{Ca}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2}$
\qquad 37. $\mathrm{Ca}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right) 2+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CaCO}_{3}+2 \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
\qquad 38. $\mathrm{Cu}(\mathrm{OH})_{2}+2 \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightarrow \mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}$
\qquad 39. $\mathrm{P}_{4}+5 \mathrm{O}_{2} \rightarrow 2 \mathrm{P}_{2} \mathrm{O}_{5}$
\qquad 40. $2 \mathrm{~K}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{KOH}+\mathrm{H}_{2}$
\qquad 41. $3 \mathrm{AgNO}_{3}+\mathrm{K}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Ag}_{3} \mathrm{PO}_{4}+3 \mathrm{KNO}_{3}$
\qquad
\qquad
Period \qquad

Balancing Equations

1) $\ldots \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}$
2) $\ldots \ldots \mathrm{AgI}+\ldots \mathrm{Fe}_{2}\left(\mathrm{CO}_{3}\right)_{3} \rightarrow \ldots \mathrm{FeI}_{3}+\ldots \mathrm{Ag}_{2} \mathrm{CO}_{3}$
3) $__{[} \mathrm{V}_{2} \mathrm{O}_{5}+\ldots \ldots \mathrm{CaS} \rightarrow \ldots \mathrm{CaO}+\ldots \mathrm{V}_{2} \mathrm{~S}_{5}$
4) \qquad $\mathrm{NaNO}_{3}+$ \qquad $\mathrm{PbO} \rightarrow$ \qquad $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+$ \qquad $\mathrm{Na}_{2} \mathrm{O}$
5) $__{ـ} \mathrm{AgBr}+\ldots \mathrm{GaPO}_{4} \rightarrow \ldots \mathrm{Ag}_{3} \mathrm{PO}_{4}+\ldots \mathrm{GaBr}_{3}$
6) \qquad $\mathrm{H}_{2} \mathrm{SO}_{4}+$ B $\mathrm{B}(\mathrm{OH})_{3} \rightarrow$ $\mathrm{B}_{2}(\mathrm{SO} 4)_{3}+$ \qquad $\mathrm{H}_{2} \mathrm{O}$
\qquad
\qquad
Period \qquad
7) $_\mathrm{C}_{8}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{SO}_{2}$
8) $\ldots \mathrm{Fe}+\ldots \mathrm{AgNO}_{3} \rightarrow \ldots \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}+\ldots \mathrm{Ag}$
9) $__{ـ} \mathrm{Fe}_{2} \mathrm{O}_{3}+\ldots \mathrm{H}_{2} \rightarrow \ldots \mathrm{Fe}+\ldots \mathrm{H}_{2} \mathrm{O}$
10) ___ $\mathrm{Li}+\ldots \mathrm{N}_{2} \rightarrow \ldots \mathrm{Li}_{3} \mathrm{~N}$
11) ___ $\mathrm{Zn}+\ldots \mathrm{HCl} \rightarrow \ldots \mathrm{ZnCl}_{2}+\ldots \mathrm{H}_{2}$
12) ___ $\mathrm{Mg}+\ldots \mathrm{N}_{2} \rightarrow \ldots \mathrm{Mg}_{3} \mathrm{~N}_{2}$
\qquad
\qquad
Period \qquad
13) ___ $\mathrm{Ca}_{3} \mathrm{P}_{2} \rightarrow \ldots \mathrm{Ca}+\ldots \mathrm{P}^{+}$
14) __ $\mathrm{HCl}+\ldots \mathrm{F}_{2} \rightarrow \ldots \mathrm{HF}_{+} __{工} \mathrm{Cl}_{2}$
15) ___ $\mathrm{NaCl} \rightarrow \ldots \mathrm{Na}+\ldots \mathrm{Cl}_{2}$
16) __ $\mathrm{H}_{2} \mathrm{O} \quad \rightarrow _\mathrm{H}_{2}+\ldots \mathrm{O}_{2}$
17) ___ $\mathrm{N}_{2}+\ldots \mathrm{H}_{2} \rightarrow \ldots \mathrm{NH}_{3}$
18) ___ $\mathrm{Ag}+\ldots \mathrm{AuCl}_{3} \rightarrow \ldots \mathrm{AgCl}_{+} __{_} \mathrm{Au}$
\qquad
\qquad
Period \qquad
19) ___ $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+\ldots \mathrm{NaCl} \rightarrow \ldots \mathrm{PbCl}_{2}+\ldots \mathrm{NaNO}_{3}$
20) ___ $\mathrm{Na}_{3} \mathrm{PO}_{4}+\ldots \mathrm{AgNO}_{3} \rightarrow __{_}{\mathrm{Ag} 3 \mathrm{PO}_{4}+\ldots \mathrm{NaNO}_{3}}^{+}$
21) \qquad $\mathrm{C}_{3} \mathrm{H}_{8}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}$
22) \qquad $\mathrm{CH}_{4}+$ \qquad $\mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+$ $-\mathrm{H}_{2} \mathrm{O}$
23) \qquad $\mathrm{H}_{2}+$ \qquad Cl_{2} \rightarrow HCl
24) \qquad $\mathrm{Na}+$ \qquad $\mathrm{H}_{2} \mathrm{O} \rightarrow-\mathrm{NaOH}+$ \qquad H_{2}

Name \qquad
Period \qquad

Identifying Reaction Types

Identify the reaction type and balance the following:

9. $\ldots \mathrm{CH}_{4}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}$	
10. __ $\mathrm{AlBr}_{3}{ }^{+} \ldots \mathrm{K}_{2} \mathrm{SO}_{4} \rightarrow$ _ $\mathrm{KBr}+\ldots \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$	
11. $\ldots \mathrm{FeCl}_{3}{ }^{+} \ldots \mathrm{NaOH} \rightarrow$ _ $\mathrm{Fe}(\mathrm{OH})_{3}{ }^{+} \ldots \mathrm{NaCl}$	
12. __P + _ $\mathrm{O}_{2} \rightarrow \ldots \mathrm{P}_{2} \mathrm{O}_{5}$	
13. $\ldots \mathrm{C}_{3} \mathrm{H}_{8}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}$	
14. $\ldots \mathrm{S}_{8}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{SO}_{3}$	
15. $\ldots \mathrm{K}+\ldots \mathrm{MgBr}_{2} \rightarrow \ldots \mathrm{KBr}+\ldots \mathrm{Mg}$	
16. $__{-} \mathrm{Na}_{2} \mathrm{CO}_{3}+\ldots \mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \ldots \mathrm{NaOH}+\ldots \mathrm{CaCO}_{3}$	

\qquad
Period \qquad

Formula Mass

Calculate the formula mass for the following:

1) Br_{2}
2) CsOH
3) BaCl_{2}
4) FeF_{3}
5) AlCl_{3}
6) $\mathrm{Pb}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$
7) $\mathrm{Al}_{2} \mathrm{O}_{3}$
\qquad
\qquad

Molar Mass - GFM

Find the gfm of the following compounds.

1) NaBr
2) PbSO_{4}
3) $\mathrm{Ca}(\mathrm{OH})_{2}$
4) $\quad \mathrm{Na}_{3} \mathrm{PO}_{4}$
5) $\quad\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$
6) $\quad \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
7) $\quad \mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
8) $\quad \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
9) O_{2}
\qquad
\qquad

Convert the following from grams to moles:

1) $15.0 \mathrm{~g} \mathrm{C} 6 \mathrm{H}_{12} \mathrm{O}_{6}$
2) 25.0 g NaOH
3) 54.0 g HCl
4) $13.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
5) $23.0 \mathrm{~g} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
6) $1.00 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$
7) 13.0 moles $\mathrm{Na}_{2} \mathrm{CO}_{3}$
8) 28.0 moles $\mathrm{H}_{2} \mathrm{O}$
9) $0.105 \mathrm{~g} \mathrm{O}_{2}$
10) 0.800 moles NH_{3}
\qquad
\qquad

Grams, Molecules, and Moles Worksheet

1) How many molecules are there in 32.0 grams of FeF_{3} ? Molecules: \qquad
2) How many molecules are there in 250 . grams of $\mathrm{Na}_{2} \mathrm{SO}_{4}$? Molecules: \qquad
3) How many grams are there in 4.60×1024 atoms of silver? Grams: \qquad
4) How many grams are there in $4.70 \times 10_{23}$ molecules of AgNO_{3} ? Grams: \qquad
5) How many grams are there in $5.70 \times 10_{23}$ molecules of $\mathrm{H}_{2} \mathrm{SO}_{4}$? Grams: \qquad
6) How many molecules are there in 221 grams of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$? Molecules: \qquad
\qquad
\qquad
7) How many grams are there in 4.90×1025 molecules of H_{2} ? Molecules: \qquad
8) How many molecules are there 230. grams of CoCl_{2} ? Molecules: \qquad
9) How many molecules are there in 3.20 grams of $\mathrm{NH}_{4} \mathrm{SO}_{2}$? Molecules: \qquad
10) How many grams are there in $4.40 \times 10_{23}$ molecules of N_{2} I6? Grams: \qquad
11) How many molecules are there in 120.0 grams of CCl_{4} ? Molecules: \qquad
12) How many molecules are there 4.39 grams of LiCl? Molecules: \qquad
\qquad

Solutions to the Molar Mass Practice Worksheet:

Important note to students: The 'mole' is a unit commonly used to indicate a number of things about the amount of material present. I will be introducing it this week. All of the units given here are "grams per mole", which may be abbreviated as " $\mathrm{g} / \mathrm{mol}$ ", "grams $/ \mathrm{mol}^{\prime}$, or " $\mathrm{g} \cdot \mathrm{mol}^{-1 "}$ ", depending on how your teacher likes to see it written. They all mean the same thing, but it's probably a good idea to use whatever your teacher showed you in class. Also, remember that if you don't use units in your answer, the answer is wrong!

All answers are rounded to the nearest 0.1 grams.

1) $\quad 102.9 \mathrm{~g} / \mathrm{mol}$
2) $\quad 303.3 \mathrm{~g} / \mathrm{mol}$
3) $\quad 74.1 \mathrm{~g} / \mathrm{mol}$
4) $164.0 \mathrm{~g} / \mathrm{mol}$
5) $\quad 96.0 \mathrm{~g} / \mathrm{mol}$
6) $\quad 180.0 \mathrm{~g} / \mathrm{mol}$
7) $\quad 357.4 \mathrm{~g} / \mathrm{mol}$
8) $\quad 68.1 \mathrm{~g} / \mathrm{mol}$
9) $\quad 183.4 \mathrm{~g} / \mathrm{mol}$
10) $\quad 126.9 \mathrm{~g} / \mathrm{mol}$
\qquad
Period \qquad

Empirical Formula Worksheet

Molecular formula from empirical formula and molecular mass.
Step 1 - Write the empirical formula.
Step 2 - Calculate the empirical formula mass.
Step 3 - Write the molar mass.
Step 4 - Divide the empirical mass by the molar mass - this is your multiplier.
Step 5 - Multiply empirical subscripts by your multiplier - this is your molecular formula.

Empirical Formula	Empirical Formula Mass	Molar Mass	Multiplier	Molecular Formula

1. A compound has an empirical formula of NO_{2} and a molecular mass of 92 . What is the molecular formula?
2. A compound with an empirical formula of CH_{2} has a molecular mass of 70 . What is the molecular formula?
3. A compound has an empirical formula of CH_{2} and a molecular mass of 42 . What is the molecular formula?
\qquad
Period \qquad
4. A compound has an empirical formula of $\mathrm{CH}_{4} \mathrm{~N}$ and a molar mass of 120 . What is the molecular formula?
5. A compound has an empirical formula of NS and a molecular mass of 138 . What is the molecular formula?
6. A compound has a molecular mass of 168 and an empirical formula of $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}$. What is the molecular formula?
7. A compound has a molecular mass of 189 and an empirical formula of $\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{O}_{2}$. What is the molecular formula?
\qquad
Period \qquad
8. A compound has a molecular mass of 222 and an empirical formula of $\mathrm{Mn}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}$. What is the molecular formula?
9. A compound has a molecular mass of 180 and an empirical formula of $\mathrm{CH}_{2} \mathrm{O}$. What is the molecular formula?
10. A compound has a molecular mass of 78 and an empirical formula of CH . What is the molecular formula?
11. A compound has a molecular mass of 70 and an empirical formula of CH_{2}. What is the molecular formula?
\qquad
Period \qquad

Percent Composition

Compound	GFM	$\%$ comp	\% comp	\% comp
$\mathrm{H}_{2} \mathrm{SO}_{4}$		$\% \mathrm{H}$	$\% \mathrm{~S}$	$\% \mathrm{O}$
CaCl_{2}		$\% \mathrm{Ca}$	$\% \mathrm{Cl}$	
$\mathrm{H}_{2} \mathrm{O}$		$\% \mathrm{H}$	$\% \mathrm{O}$	
CuCO_{3}		$\% \mathrm{Cu}$	$\% \mathrm{C}$	
$\mathrm{KOH}^{\mathrm{NaCl}}$		$\% \mathrm{Na}$	$\% \mathrm{Cl}$	$\% \mathrm{O}$
$\mathrm{Al}_{2}\left(\mathrm{PO}_{4}\right)_{3}$			$\% \mathrm{Al}$	$\% \mathrm{P}$

\qquad
Period \qquad

Compound	GFM	\% comp	\% comp	\% comp
$\mathrm{C}_{2} \mathrm{H}_{6}$		\% C	\% H	
ZnI_{2}		\% Zn	\% I	
CO_{2}		\% C	\% O	
CaO		\% Ca	\% O	
NO		\% N	\% O	
$\mathrm{Fe}_{2} \mathrm{O}_{3}$		\% Fe	\% O	
$\mathrm{H}_{2} \mathrm{O}_{2}$		\% H	\% O	
$\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$		$\% \mathrm{Cu}$	$\% \mathrm{CuSO}_{4}$	\% $\mathrm{H}_{2} \mathrm{O}$

\qquad
Period \qquad

Empirical Formula From Percent Composition

Determine the empirical formula for each of the following:

1. $92.24 \% \mathrm{C} ; 7.76 \% \mathrm{H}$
2. $36.48 \% \mathrm{Na} ; 25.44 \% \mathrm{~S} ; 38.08 \% \mathrm{O}$
3. $49.99 \% \mathrm{C} ; 5.61 \% \mathrm{H} ; 44.40 \% \mathrm{O}$
4. $38.76 \% \mathrm{Ca} ; 19.97 \% \mathrm{P} ; 41.27 \% \mathrm{O}$
5. A compound composed of 0.556 g carbon and 0.0933 g hydrogen.
\qquad

Molecular Formula from Empirical Formula and Percent Composition

1. Calculate the molecular formula for the following:
a. empirical formula CH , molar mass $=78 \mathrm{~g} / \mathrm{mol}$
b. empirical formula NO 2 , molar mass $=46.01 \mathrm{~g} / \mathrm{mol}$
c. caffeine, $49.5 \% \mathrm{C}, 5.15 \% \mathrm{H}, 28.9 \% \mathrm{~N}, 16.5 \% \mathrm{O}$ by mass, molar mass $=195 \mathrm{~g}$
d. A compound analyzes as $79.08 \% \mathrm{C} ; 5.54 \% \mathrm{H}$ and $15.38 \% \mathrm{~N}$. What isthe molecular formula if the molar mass is $273.36 \mathrm{~g} / \mathrm{mol}$?
\qquad
\qquad

Crystal Hydrates

1. Base your answer to the following question on A hydrate is a compound with water molecules incorporated into its crystal structure. In an experiment to find the percent by mass of water in a hydrated compound, the following data were recorded:

	7. ${ }^{\text {a }}$, Mram
Mass of cnutile	
	7,

What is the percent by mass of water in the hydrate?
A) $72 . \%$
B) $50 . \%$
C) $96 . \%$
D) 8.0%
2. The percent by mass of water in the hydrate $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ is closest to
A) 18%
B) 44%
C) 76%
D) 56%
3. What is the percent by mass of water present in 1.0 mole of $\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$?
A) 79%
B) $10 . \%$
C) 12%
D) 21%
4. A student obtained the following data to determine the percent by mass of water in a hydrate.

Mass of empty crucible + cover.	11.70 g
Mass of crucible + cover + hydrated salt before heating	14.90 g
Mass of crucible + cover + anhydrous salt after thorough heating	14.53 g

What is the approximate percent by mass of the water in the hydrated salt?
A) 12%
B) 88%
C) 98%
D) 2.5%
5. A 4.4 gram sample of a hydrate was heated until the water of hydration was driven off. The anhydrous compound remaining had a mass of 3.3 grams. What is the percentage by mass of water in the hydrate?
A) 25%
B) 33%
C) 67%
D) 75%
6. A 20. gram sample of a hydrate is heated until all the water of hydration is driven off. The mass of the anhydrous compound remaining is 15 grams. What is the percent by mass of water in the hydrate?
A) 75%
B) 15%
C) 25%
D) 33%
7. Which species contains the greatest percent by mass of hydrogen?
A) $\mathrm{H3O}^{+}$
B) $\mathrm{H}_{2} \mathrm{O}_{2}$
C) $\mathrm{H}_{2} \mathrm{O}$
D) OH^{-}
8. A 1.20 -gram sample of a hydrated salt is heated to a constant mass of 0.80 gram. What was the percent by mass of water contained in the original sample?
A) 20 .
B) 33
C) 50 .
D) 67
9. A student determining the percent by mass of water in a hydrated crystal obtained the following data.
Mass of crystal before heating.................. 5.0 g
Mass of crystal after 1st heating............... 4.0 g
Mass of crystal after 2nd heating.............. 4.0 g
What is the percent by mass of water in the hydrate?
A) 0.80%
B) 0.20%
C) $80 . \%$
D) $20 . \%$
10. The percent by mass of water in $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (formula mass $=243$) is equal to
A) $\frac{18}{243} \times 100$
B) $\frac{243}{18} \times 100$
C) $\frac{243}{36} \times 100$
D) $\frac{36}{243} \times 100$
\qquad
Period \qquad
11. A 10.0 gram sample of a hydrate was heated until all the water of hydration was driven off. The mass of anhydrous product remaining was 8.00 grams. What is the percent of water in the hydrate?
A) 25.0%
B) 12.5%
C) 80.0%
D) 20.0%
12. A 60. gram sample of $\mathrm{LiCl} \cdot \mathrm{H}_{2} \mathrm{O}$ is heated in an open crucible until all of the water has been driven off. What is the total mass of LiCl remaining in the crucible?
A) 42 g
B) 24 g
C) 18 g
D) 60 g
13. A student determining the percent by mass of water in a hydrated sample of salt obtained the following data:
Mass of hydrate 6.25 g
Mass of sample after 1st heating 5.12 g
Mass of sample after 2nd heating 5.12 g
The correct expression for obtaining the percent by mass of water in the sample is
A) $\frac{6.25 \mathrm{~g}}{1.13 \mathrm{~g}} \times 100$
B) $\frac{5.12 \mathrm{~g}}{6.25 \mathrm{~g}} \times 100$
C) $\frac{6.25 \mathrm{~g}}{5.12 \mathrm{~g}} \times 100$
D) $\frac{1.13 \mathrm{~g}}{6.25 \mathrm{~g}} \times 100$
14. An 8.24-gram sample of a hydrated salt is heated until it has a constant mass of 6.20 grams. What was the percent by mass of water contained in the original sample?
A) 75.2%
B) 14.1%
C) 24.8%
D) 32.9%

Base your answers to questions 15 and 16 on the table below shows the data collected during the heating of a 5.0 gram sample of a hydrated salt.

Mass of Salt (g)	Heating Time (min)
5.0	0.0
4.1	5.0
3.1	10.
3.0	15.
3.0	30.
3.0	60.

15. What is the percent of water in the original sample?
A) $82 . \%$
B) $40 . \%$
C) $60 . \%$
D) $30 . \%$
16. After 60 . minutes, how many grams of water appear to remain in the salt?
A) 0.00
B) 2.0
C) 1.9
D) 0.90
\qquad
\qquad

Mole Ratio Worksheet

1) Given this equation: $\mathrm{N}_{2}+3 \mathrm{H}_{2}$---> $2 \mathrm{NH}_{3}$, write the following molar ratios:
a) $\mathrm{N}_{2} / \mathrm{H}_{2}$
b) $\mathrm{N}_{2} / \mathrm{NH}_{3}$
c) $\mathrm{H}_{2} / \mathrm{NH}_{3}$
2) Given the following equation: $8 \mathrm{H}_{2}+\mathrm{S}_{8}--->8 \mathrm{H}_{2} \mathrm{~S}$, write the following molar ratios:
a) $\mathrm{H}_{2} / \mathrm{H}_{2} \mathrm{~S}$
b) $\mathrm{H}_{2} / \mathrm{S}_{8}$
c) $\mathrm{H}_{2} \mathrm{~S} / \mathrm{S}_{8}$
3) Answer the following questions for this equation: $2 \mathrm{H}_{2}+\mathrm{O}_{2}--->2 \mathrm{H}_{2} \mathrm{O}$
a) What is the $\mathrm{H}_{2} / \mathrm{H}_{2} \mathrm{O}$ molar ratio?
b) Suppose you had 20 moles of H_{2} on hand and plenty of O_{2}, how many moles of $\mathrm{H}_{2} \mathrm{O}$ could you make?
c) What is the $\mathrm{O}_{2} / \mathrm{H}_{2} \mathrm{O}$ molar ratio?
d) Suppose you had 20 moles of O_{2} and enough H_{2}, how many moles of $\mathrm{H}_{2} \mathrm{O}$ could you make?
4) Use this equation: $\mathrm{N}_{2}+3 \mathrm{H}_{2}--->2 \mathrm{NH}_{3}$, for the following problems
a) If you used 1 mole of N_{2}, how many moles of NH_{3} could be produced?
b) If 10 moles of NH_{3} were produced, how many moles of N_{2} would be required?
c) If 3.00 moles of H_{2} were used, how many moles of NH_{3} would be made?
d) If 0.600 moles of NH_{3} were produced, how many moles of H_{2} are required?
\qquad
\qquad
Period \qquad
Mole/Mole Ratio Problems
1. __ $\mathrm{N}_{2}+\ldots \mathrm{H}_{2} \rightarrow$ __ NH_{3}
a. How many moles of hydrogen are needed to completely react with two moles of nitrogen?
b. How many moles of nitrogen trihydride can be produced with 5 moles of nitrogen?
c. How many moles of nitrogen are needed to produce .5 moles of nitrogen trihydride?
d. How many liters of nitrogen trihydride can be produced from 24 liters of nitrogen gas?
2. \qquad $\mathrm{KClO}_{3} \rightarrow$ __K $\mathrm{KCl}+$ \qquad O_{2}
a. How many moles of oxygen are produced by the decomposition of six moles of potassium chlorate?
b. How many moles of potassium chloride are produced by the decomposition of .75 moles of potassium chlorate?
c. How many moles of potassium chlorate are needed to produce 100 moles of oxygen?
d. How many liters of oxygen will the decomposition of 100 liters of potassium chlorate produce?
\qquad
\qquad
3. \square $\mathrm{Zn}+$ $\mathrm{HCl} \rightarrow \ldots \mathrm{ZnCl}_{2}+$ \qquad H_{2}
a. How many moles of hydrogen are produced from the reaction of three moles of zinc?
b. How many moles zinc are needed to produce 3.5 moles of zinc chloride?
c. How many moles of hydrogen can 15 moles hydrogen chloride produce?
d. How many liters hydrogen chloride are needed react with 11 liters of zinc?
4. \square $\mathrm{C}_{3} \mathrm{H}_{8}+$ $\mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+$ \square $\mathrm{H}_{2} \mathrm{O}$
a. How many moles of oxygen are necessary to react completely with fours moles of Propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$?
b. How many moles of Propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ are needed to produce 25 moles of carbon dioxide?
c. How many moles of water will 3 moles of propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ produce?
d. How many liters of Propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ are needed to react with 75 liters of oxygen?
5. \square $\mathrm{NaCl}+$ $\mathrm{F}_{2} \rightarrow \ldots \mathrm{NaF}+$ \square Cl_{2}
a. How many moles of fluorine are needed to produce 3.2 moles of sodium chloride?
b. How many moles of chlorine can me produced by using a total of 3 moles of sodium chloride?
c. How many moles of sodium fluoride can five moles of fluorine produce?
\qquad

Math of Chemistry Review

34 What is the gram-formula mass of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$?
(1) $248 \mathrm{~g} / \mathrm{mol}$
(3) $279 \mathrm{~g} / \mathrm{mol}$
(2) $263 \mathrm{~g} / \mathrm{mol}$
(4) $310 . \mathrm{g} / \mathrm{mol}$

17 What is the total number of different elements present in $\mathrm{NH}_{4} \mathrm{NO}_{3}$?
(1) 7
(3) 3
(2) 9
(4) 4

Base your answers to questions 77 through 79 on the information below.
Some dry chemicals can be used to put out forest fires. One of these chemicals is NaHCO_{3}. When $\mathrm{NaHCO}_{3}(\mathrm{~s})$ is heated, one of the products is $\mathrm{CO}_{2}(\mathrm{~g})$, as shown in the balanced equation below.

$$
2 \mathrm{NaHCO}_{3}(\mathrm{~s})+\text { heat } \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})
$$

77 In the space in your answer booklet, show a correct numerical setup for calculating the percent composition by mass of carbon in the product $\mathrm{Na}_{2} \mathrm{CO}_{3}$. [1]

78 Identify the type of chemical reaction represented by this equation. [1]
79 Determine the total number of moles of $\mathrm{CO}_{2}(\mathrm{~g})$ produced when 7.0 moles of $\mathrm{NaHCO}_{3}(\mathrm{~s})$ is completely reacted. [1]

10 Given the balanced equation representing a reaction:

$$
2 \mathrm{CO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})
$$

What is the mole ratio of $\mathrm{CO}(\mathrm{g})$ to $\mathrm{CO}_{2}(\mathrm{~g})$ in this reaction?
(1) $1: 1$
(3) $2: 1$
(2) $1: 2$
(4) $3: 2$

51 What is the oxidation number of nitrogen in $\mathrm{NO}(\mathrm{g})$? [1]
12 Which polyatomic ion contains the greatest number of oxygen atoms?
(1) acetate
(3) hydroxide
(2) carbonate
(4) peroxide

Period \qquad

9 What is the name of the polyatomic ion in the compound $\mathrm{Na}_{2} \mathrm{O}_{2}$?
(1) hydroxide
(3) oxide
(2) oxalate
(4) peroxide

36 Which formula represents lead(II) chromate?
(1) PbCrO_{4}
(3) $\mathrm{Pb}_{2} \mathrm{CrO}_{4}$
(2) $\mathrm{Pb}\left(\mathrm{CrO}_{4}\right)_{2}$
(4) $\mathrm{Pb}_{2}\left(\mathrm{CrO}_{4}\right)_{3}$

36 Given the balanced equation representing a reaction:

$$
4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}
$$

What is the minimum number of moles of O_{2} that are needed to completely react with 16 moles of NH_{3} ?
(1) 16 mol
(3) 64 mol
(2) $20 . \mathrm{mol}$
(4) $80 . \mathrm{mol}$

18 Bronze contains 90 to 95 percent copper and 5 to 10 percent tin. Because these percentages can vary, bronze is classified as
(1) a compound
(3) a mixture
(2) an element
(4) a substance

38 Which pair consists of a molecular formula and its corresponding empirical formula?
(1) $\mathrm{C}_{2} \mathrm{H}_{2}$ and $\mathrm{CH}_{3} \mathrm{CH}_{3}$
(3) $\mathrm{P}_{4} \mathrm{O}_{10}$ and $\mathrm{P}_{2} \mathrm{O}_{5}$
(2) $\mathrm{C}_{6} \mathrm{H}_{6}$ and $\mathrm{C}_{2} \mathrm{H}_{2}$
(4) SO_{2} and SO_{3}

10 Given the balanced equation representing the reaction between propane and oxygen:

$$
\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

According to this equation, which ratio of oxygen to propane is correct?

(3) $\frac{10 \text { grams } \mathrm{O}_{2}}{11 \text { grams } \mathrm{C}_{3} \mathrm{H}_{8}}$
(2) $\frac{5 \text { moles } \mathrm{O}_{2}}{1 \text { mole } \mathrm{C}_{3} \mathrm{H}_{8}}$
(4) $\frac{10 \text { moles } \mathrm{O}_{2}}{11 \text { moles } \mathrm{C}_{3} \mathrm{H}_{8}}$

17 Which substance can be decomposed by chemical means?
(1) tungsten
(3) krypton
(2) antimony
(4) methane

55 Determine the percent composition by mass of oxygen in the compound $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$. [1]

55 \qquad $\%$

Period \qquad

6 A compound is made up of iron and oxygen, only. The ratio of iron ions to oxide ions is $2: 3$ in this compound. The IUPAC name for this compound is
(1) triiron dioxide
(3) iron(III) oxide
(2) iron(II) oxide
(4) iron trioxide

37 The percent composition by mass of magnesium in MgBr_{2} (gram-formula mass $=184$ grams $/ \mathrm{mole}$) is equal to
(1) $\frac{24}{184} \times 100$
(3) $\frac{184}{24} \times 100$
(2) $\frac{160 .}{184} \times 100$
(4) $\frac{184}{160} \times 100$

9 What is the total number of pairs of electrons shared in a molecule of N_{2} ?
(1) one pair
(3) three pairs
(2) two pairs
(4) four pairs

38 Given the balanced equation:

$$
\begin{gathered}
\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \\
\mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell)+\mathrm{CO}_{2}(\mathrm{~g})
\end{gathered}
$$

What is the total number of moles of CO_{2} formed when 20 . moles of HCl is completely consumed?
(1) 5.0 mol
(3) $20 . \mathrm{mol}$
(2) $10 . \mathrm{mol}$
(4) $40 . \mathrm{mol}$

51 In the space in your answer booklet, draw a Lewis electron-dot diagram for a sulfur atom in the ground state. [1]

6 What is the IUPAC name for the compound FeS?
(1) iron(II) sulfate
(3) iron(II) sulfide
(2) iron(III) sulfate
(4) iron(III) sulfide

35 In which compound is the percent composition by mass of chlorine equal to 42% ?
(1) HClO (gram-formula mass $=52 \mathrm{~g} / \mathrm{mol}$)
(2) HClO_{2} (gram-formula mass $=68 \mathrm{~g} / \mathrm{mol}$)
(3) HClO_{3} (gram-formula mass $=84 \mathrm{~g} / \mathrm{mol}$)
(4) HClO_{4} (gram-formula mass $=100 . \mathrm{g} / \mathrm{mol}$)

7 Given the balanced equation representing a reaction:

$$
\mathrm{F}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HF}(\mathrm{~g})
$$

What is the mole ratio of $\mathrm{H}_{2}(\mathrm{~g})$ to $\mathrm{HF}(\mathrm{g})$ in this reaction?
(1) $1: 1$
(3) $2: 1$
(2) $1: 2$
(4) $2: 3$

8 What is the chemical formula for sodium sulfate?
(1) $\mathrm{Na}_{2} \mathrm{SO}_{3}$
(3) NaSO_{3}
(2) $\mathrm{Na}_{2} \mathrm{SO}_{4}$
(4) NaSO_{4}

36 Given the balanced equation:

$$
2 \mathrm{C}+3 \mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}
$$

What is the total number of moles of C that must completely react to produce 2.0 moles of $\mathrm{C}_{2} \mathrm{H}_{6}$?
(1) 1.0 mol
(3) 3.0 mol
(2) 2.0 mol
(4) 4.0 mol

10 Which chemical equation is correctly balanced?
(1) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
(2) $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{NH}_{3}(\mathrm{~g})$
(3) $2 \mathrm{NaCl}(\mathrm{s}) \rightarrow \mathrm{Na}(\mathrm{s})+\mathrm{Cl}_{2}(\mathrm{~g})$
(4) $2 \mathrm{KCl}(\mathrm{s}) \rightarrow 2 \mathrm{~K}(\mathrm{~s})+\mathrm{Cl}_{2}(\mathrm{~g})$

Period \qquad

Base your answers to questions 82 through 85 on the information below.
A student places a 2.50 -gram sample of magnesium metal in a bottle and fits the bottle with a 2-hole stopper as shown in the diagram. Hydrochloric acid is added to the bottle, causing a reaction. As the reaction proceeds, hydrogen gas travels through the tubing to an inverted bottle filled with water, displacing some of the water in the bottle.

82 Balance the equation in your answer booklet for the reaction of magnesium and hydrochloric acid, using the smallest whole-number coefficients. [1]

83 Identify the type of chemical reaction that occurs when magnesium reacts with hydrochloric acid. [1]

84 In the space in your answer booklet, show a correct numerical setup for calculating the number of moles of magnesium used in the experiment.

85 Based on Reference Table J, explain why Ag(s) will not react with $\mathrm{HCl}(\mathrm{aq})$ to generate $\mathrm{H}_{2}(\mathrm{~g})$. [1]

Name
Date
Period \qquad

82 \qquad $\mathrm{Mg}(\mathrm{s})+$ \qquad $\mathrm{HCl}(\mathrm{aq}) \rightarrow$ \qquad $\mathrm{MgCl}_{2}(\mathrm{aq})+$ \qquad $\mathrm{H}_{2}(\mathrm{~g})$

83 \qquad

84

85 \qquad
\qquad
\qquad

33 What is the percent composition by mass of nitrogen in $\mathrm{NH}_{4} \mathrm{NO}_{3}$ (gram-formula mass $=80.0$ grams/mole)?
(1) 17.5%
(3) 52.5%
(2) 35.0%
(4) 60.0%

31 The percentage by mass of Br in the compound AlBr_{3} is closest to
(1) $10 . \%$
(3) 75%
(2) 25%
(4) 90%

9 The correct chemical formula for iron(II) sulfide is
(1) FeS
(3) FeSO_{4}
(2) $\mathrm{Fe}_{2} \mathrm{~S}_{3}$
(4) $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$

48 Given the incomplete equation:

$$
4 \mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{X}
$$

Which compound is represented by X ?
(1) FeO
(3) $\mathrm{Fe}_{3} \mathrm{O}_{2}$
(2) $\mathrm{Fe}_{2} \mathrm{O}_{3}$
(4) $\mathrm{Fe}_{3} \mathrm{O}_{4}$
\qquad

1) How many oxygen atoms are represented in the formula $\mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3}$?
a) 3
b) 9
c) 10
d) 6
2) What is the total number of atoms present in 1 mole of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$?
a) 8
b) 5
c) 10
d) 13
3) What is the total mass of iron in 1.0 mole of $\mathrm{Fe}_{2} \mathrm{O}_{3}$?
a) 72 g
b) 112 g
c) 569
d) 160 g
4) What is the gram formula mass of $\mathrm{Li}_{2} \mathrm{SO}_{4}$?
a) 2069
b) 55 g
c) 110 g
d) 54 g
5) What is the percent composition by mass of sulfur in $\mathrm{H}_{2} \mathrm{SO}_{4}$? [formula mass = 98]
a) 98%
b) 16%
c) 65%
d) 33%
6) A hydrate is a compound with water molecules incorporated into its crystal structure. In an experiment to find the percent by mass of water in a hydrated compound, the following data were recorded:

Mass of test tube + hydrate crystals before heating	25.3 grams
Mass of test tube	21.3 grams
Mass of test tube + anhydrate crystals after heating	22.3 grams

What is the percent by mass of water in the hydrate?
a) 75%
b) 50%
c) 8.0%
d) 95%
7) Which of the following statements explains why mass is lost when a student heats a sample of $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ crystals?
a) water is given off as a gas
c) chlorine is given off as a gas
b) the crystals sublime
d) the crystals fuse (melt)
8) When the equation $\mathrm{H}_{2} \mathrm{~S}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2}$ is completely balanced using the smallest whole numbers, the sum of all the coefficients is
a) 9
b) 11
c) 7
d) 5
9) What is the percent by mass of water in the hydrate $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ [formula mass $=286$]?
a) 26.1%
b) 62.9%
c) 6.89%
d) 214.5%
10) How many grams are there in 2.5 moles of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$?
a) 18
b) 115
c) 46
d) 0.05
11) Which quantity is equivalent to 146 grams of NaCl ?
a) 1.0 mole
b) 2.5 moles
c) 2.0 moles
d) 1.5 moles
12) The equation below is best classified as which type of chemical reaction?

$$
\mathrm{H}_{2}+\mathrm{Fe}_{3} \mathrm{O}_{4} \rightarrow \mathrm{Fe}+\mathrm{H}_{2} \mathrm{O}
$$

a) Synthesis
c) Single replacement
b) Combustion
d) Double replacement
13) When the equation $\mathrm{NaBr}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Na}_{3} \mathrm{PO}_{4}+\mathrm{HBr}$ is balanced using the smallest whole numbers, the sum of the coefficients will be
a) 6
b) 8
c) 5
d) 4
14) The equation below is best classified as which type of chemical reaction?

$$
2 \mathrm{C}_{2} \mathrm{H}_{2}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

a) Synthesis
c) Single replacement
b) Combustion
d) Double replacement
15) Given the reaction: $\quad 2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$

What is the ratio of moles of CO_{2} produced to moles of $\mathrm{C}_{2} \mathrm{H}_{6}$ consumed?
a) 7 to 2
b) 2 to 1
c) 1 to 1
d) 3 to 2
16) Which represents the greatest mass of chlorine?
a) 1 atom of chlorine
b) 1 molecule of chlorine
c) 1 mole of chlorine
d) 1 gram of chlorine
17) Given the reaction: $2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2}$, what is the total number of moles of hydrogen produced when 4 moles of sodium react completely?
a) 1
b) 2
c) 3
d) 4
18) What type of reaction best describes the following chemical reaction?

$$
\mathrm{Zn}+\mathrm{CuSO}_{4}-->\mathrm{ZnSO}_{4}+\mathrm{Cu}
$$

a) single replacement
c) decomposition
b) double replacement
d) synthesis
19) Which chemical equation best represent a decomposition reaction?
a) $\mathrm{Cl}_{2}+2 \mathrm{KI} \rightarrow 2 \mathrm{KCl}+\mathrm{I}_{2}$
b) $2 \mathrm{Al}+3 \mathrm{Cl}_{2} \rightarrow 2 \mathrm{AlCl}_{3}$
c) $\mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
d) $\mathrm{KCl}+\mathrm{AgNO}_{3} \rightarrow \mathrm{KNO}_{3}+\mathrm{AgCl}$
20) What is the molecular formula of a compound that has a molecular mass of 54 and an empirical formula of $\mathrm{C}_{2} \mathrm{H}_{3}$?
a) $\mathrm{C}_{8} \mathrm{H}_{12}$
b) $\mathrm{C}_{6} \mathrm{H}_{9}$
c) $\mathrm{C}_{4} \mathrm{H}_{6}$
d) $\mathrm{C}_{2} \mathrm{H}_{3}$
21) What is the empirical formula of the compound whose molecular formula is $\mathrm{P}_{4} \mathrm{O}_{10}$?
a) $\mathrm{P}_{8} \mathrm{O}_{20}$
b) PO_{2}
c) $\mathrm{P}_{2} \mathrm{O}_{5}$
d) PO
22) Which of the following is an empirical formula?
a) $\mathrm{H}_{2} \mathrm{O}_{2}$
b) $\mathrm{H}_{2} \mathrm{O}$
c) $\mathrm{C}_{2} \mathrm{H}_{2}$
d) $\mathrm{C}_{4} \mathrm{H}_{8}$
23) Which represents both an empirical and molecular formula?
a) $\mathrm{P}_{2} \mathrm{O}_{5}$
b) $\mathrm{C}_{3} \mathrm{H}_{6}$
c) $\mathrm{N}_{2} \mathrm{O}_{4}$
d) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

Constructed Response Questions

For questions 24 and 25, show all work and express your answer in the appropriate units.
24) Calculate the gram formula mass of ZnSO_{4}. (3 pts)
25) Use your answer from 23 to calculate the percent by mass of zinc in ZnSO_{4}. (3 pts)
26) Balance the following reaction and reduce to the lowest whole number coefficients: (1 pt)
\qquad $\mathrm{H}_{2} \mathrm{SO}_{4}+$ \qquad $\mathrm{B}(\mathrm{OH})_{3} \rightarrow$ \qquad $\mathrm{B}_{2}\left(\mathrm{SO}_{4}\right)_{3}+$ \qquad $\mathrm{H}_{2} \mathrm{O}$
27) Li and KNO 3 according to the following equation:

$$
\mathrm{Li}+\mathrm{KNO}_{3} \rightarrow \mathrm{LiNO}_{3}+X
$$

Write the formula for the missing product X. (1 pt)

Use the chemical equation below to answer questions 28-30.

28) Balance the equation above using the lowest whole number coefficients.
29) How many moles of H_{2} are required to produce 6.5 moles of NH_{3} ? Show all work and make sure your answer has the correct number of significant figures and proper units.
30) How many grams of NH_{3} are produced if 50.0 grams of N_{2} are consumed? Show all work and make sure your answer has the correct number of significant figures and proper units.

For question 31, show all work and make sure your answer has the correct number of significant figures and proper units.
31) A compound consists of 85% silver and 15% fluorine by mass.
a) What is the empirical formula for this compound?
b) What is the molecular formula (molar mass $=126.9 \mathrm{~g}$)
\qquad

For questions 24 and 25 , show all work and express your answer in the appropriate units.

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
25) Use your answer from 23 to calculate the percent by mass of zinc in ZnSO_{4}. (3 pts)
7. \qquad
8. \qquad
9. \qquad
10 \qquad
10. \qquad
11. \qquad Write the formula for the missing product X. \qquad (1 pt)
12. \qquad
13. \qquad
14. \qquad
15. \qquad 29) How many moles of H_{2} are required to produce 6.5 moles of NH_{3} ? Show all work and make sure your answer has the correct number of significant figures and proper units.
16. \qquad
19 \qquad
17. \qquad
18. \qquad
19. \qquad
20. \qquad
31) A compound consists of 85% silver and 15% fluorine by mass (molar mass $=126.9 \mathrm{~g}$).
a) What is the empirical formula for this compound?
b) What is the molecular formula?
